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Reversible extensions of irreversible
dynamical systems: the C∗-method

B. K. Kwaśniewski and A.V. Lebedev

Abstract. A construction of a reversible extension of irreversible dynam-
ical systems is presented. It is based on calculating the maximal ideal
spaces of the C∗-algebras generated by these systems and the corresponding
reversible extensions of endomorphisms. Connections between the objects
that arise and dynamical systems of Smale horseshoe and other types are
revealed.

Bibliography: 20 titles.

§ 1. Introduction. Extensions of C∗-algebras by partial isometries,
extensions of dynamical systems and coefficient algebras

The problems at the heart of this paper arise in a variety of areas of analysis,
including the theory of C∗-algebras associated with automorphisms and endomor-
phisms and, in particular, the theory of crossed products, the theory of dynamical
systems and their inverse (projective) limits, spectral analysis of weighted shift
operators and transfer operators.

To explain our motivation we first give some simple examples, as models illus-
trating the statement of the problem and the C∗-algebraic and dynamical objects
arising in its analysis.

1.1. Extending C∗-algebras by partial isometries. Extending endomor-
phisms to automorphisms.

Example 1.1 (the Töplitz algebra). Recall the construction of the classical Töplitz
algebra. Let H = l2(N) and let A ⊂ L(H) be the C∗-algebra of operators of
multiplication by bounded convergent sequences

a = (a(k)) ∈ l∞(N), lim
k→+∞

a(k) = a(+∞).

We define an isometric operator U ∈ L(H) (a one-sided shift) by the formula

(Uh)(k) =

{
0, k = 0,

h(k − 1), k > 0,
h ∈ H.

The Töplitz algebra is the C∗-algebra C∗(A , U) generated by A and the operator U .
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After some straightforward calculations, we see that the maps

A 3 a 7→ δ(a) = UaU∗,

A 3 a 7→ δ∗(a) = U∗aU

are endomorphisms of A :

δ(a)(k) =

{
0, k = 0,

a(k − 1), k > 0,
(1)

δ∗(a)(k) = a(k + 1), a( · ) ∈ A .

The Töplitz algebra is a classical object of analysis, with plenty of applications.
One might say it has the ‘deficiency’ that it is naturally associated with an endo-
morphism δ, rather than with an automorphism. Can this be corrected? In the
next example we show how to do this in a simple way.

Example 1.2 (the extended Töplitz algebra). Let H = l2(Z) and let A ⊂ L(H) be
the C∗-algebra of operators of multiplication by bounded sequences vanishing on the
negative part of Z and with limits at +∞:

a = (a(k)) ∈ l∞(Z), ∀k<0 a(k) = 0, lim
k→+∞

a(k) = a(+∞).

This algebra A is clearly isomorphic (as a C∗-algebra) to the algebra A from the
previous example.

Let U ∈ L(H) be the unitary operator (a two-sided shift) defined by the formula

(Uh)(k) = h(k − 1), h ∈ H.

Note that in this case the map A 3 a 7→ δ(a) = UaU∗ is an endomorphism of the
algebra A :

δ(a)(k) =

{
0, k 6 0,

a(k − 1), k > 0.

However, the map A 3 a 7→ δ∗(a) = U∗aU is no longer an endomorphism of A
because U∗A U * A .

Consider the algebra B ⊂ L(H) of operators of multiplication by bounded
sequences with limits at ±∞:

b = (b(k)) ∈ l∞(Z), lim
k→±∞

b(k) = b(±∞).

We readily see that
C∗(A , U) = C∗(B, U).

Moreover, the maps δ( · ) = U( · )U∗ and δ∗( · ) = U∗( · )U are now automorphisms
of the algebra B:

δ(b)(k) = b(k − 1), δ∗(b)(k) = (k + 1). (2)

We shall call C∗(B, U) the extended Töplitz algebra.
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It is well known that
C∗(B, U) ∼= B ×δ Z,

where on the right-hand side we have the crossed product of the algebra B and the
group Z acting on B by the automorphisms δn, n ∈ Z. Here the elements of
the crossed product can be represented by formal series with coefficients in B.

In this example it is natural to regard B as an extension of the algebra A and
C∗(B, U) as an extension of the Töplitz algebra C∗(A , U) from Example 1.1; then
the endomorphism δ : A → A described in Example 1.1 by formula (1) extends
to the automorphism δ : B → B described here by formula (2).

Thus, by extending the Töplitz algebra (associated with an endomorphism) we
arrive at the construction of a crossed product associated with an automorphism.

The important role of structures similar to Töplitz algebras and crossed products
is well-known in analysis.

Starting from this example we arrive in a natural way at the following problem:
can we carry out a construction similar to that in these examples in a more general
setting, that is, can we describe a general construction of an extension B of an
algebra A such that the extension to B of a fixed endomorphism δ : A → A is
an automorphism? In this paper we present a complete answer to this question in
the case of a commutative algebra A .

In reality, our question is closely connected with the problem of constructing
reversible extensions of irreversible dynamical systems. To illustrate this connection
we will look at the above examples from the point of view of topological dynamics.

1.2. Reversible extensions of irreversible dynamical systems.

Example 1.3 (a dynamical interpretation of Example 1.2). For technical reasons
and for convenience, alongside the objects from Example 1.2, we shall also consider
the C∗-algebra A := C∗(A , 1) generated by the algebra A in Example 1.2 and the
identity operator 1. Obviously, A is the algebra of operators a ∈ B of multiplica-
tion by sequences that are constant for n < 0. In essence, the observations made in
Example 1.2 do not change, since C∗(A , U) = C∗(B, U) and the algebra B is an
extension of A ; furthermore, the map δ( · ) = U( · )U∗ is an endomorphism of the
algebra A and U∗A U * A .

Note that
A ∼= C(N) and B ∼= C(Z),

where N = N ∪ {−∞,+∞} and Z = Z ∪ {−∞,+∞}.
Consider the map α : N→ N defined by the formulae

α(k) = k − 1, k > 0, α(0) = −∞, α(±∞) = ±∞,

and the map (the homeomorphism) α̃ : Z→ Z defined by the formulae

α̃(k) = k − 1, k ∈ Z, α(±∞) = ±∞.

The map α defines an endomorphism δ of the algebra A :

δ(a) = a ◦ α, a ∈ A ,



1624 B.K. Kwaśniewski and A. V. Lebedev

while α̃ defines an automorphism δ (an extension of the above endomorphism) of B:

δ(b) = b ◦ α̃, b ∈ B.

Consider also the map Ψ: Z→ N defined by the formulae

Ψ(n) = n, n > 0, Ψ(n) = −∞, n < 0, Ψ(±∞) = ±∞.

It establishes a semiconjugacy between the dynamical systems (Z, α̃) and (N, α)
in the following sense: α(Ψ(x)) = Ψ(α̃(x)), x ∈ Z, and since Ψ is surjective, the
dynamical system (Z, α̃) can naturally be regarded as a reversible extension of
the irreversible dynamical system (N, α).

We see that associated with the extension of the endomorphism δ from the alge-
bra A to an automorphism of the algebra B ⊃ A is an extension of the irreversible
dynamical system (N, α) to the reversible dynamical system (Z, α̃).

Remark 1.4. As concerns the map Ψ, it has the following important property which
is perhaps worth a mention. Identifying the sets N and Z with the sets of multi-
plicative functionals on the algebras A and B, respectively, we note that

Γ := {−∞, n < 0} = Ψ−1(−∞) ⊂ Z

coincides with the set of multiplicative functionals on B extending the multiplica-
tive functional −∞ ∈ N on A (cf. the general case described in § 2.2 below and
also in § 4, where a similar map is defined by formula (68)).

As we shall show in Theorem 2.2, there is a general relation between alge-
bra endomorphisms and dynamical systems, therefore the above example and its
C∗-algebraic description lead to the following question: what form should a general
construction of an invertible extension of a non-invertible dynamical system take,
and how is this construction connected with the construction of an extension of
a C∗-algebra and an extension of an endomorphism to an automorphism? We will
also answer this question in our paper.

In fact, all the above questions and the objects described above come together
in the construction of the so-called coefficient algebra, which we will now discuss.

1.3. Constructing the coefficient algebra. The concept of a coefficient alge-
bra was introduced in [1] in connection with the investigation of extensions of
C∗-algebras by partial isometries. More precisely, in [1] the authors considered the
following object. Let H be a Hilbert space and A ⊂ L(H) be a ∗-algebra containing
the unity 1 of the algebra L(H). The paper aimed to describe the C∗-extensions
of the algebra A associated with the maps

δ(x) = UxU∗, δ∗(x) = U∗xU, x ∈ L(H), (3)

where U ∈ L(H), U 6= 0. It is clear that δ and δ∗ are continuous linear transfor-
mations of L(H) (‖δ‖ = ‖δ∗‖ = ‖U2‖) and δ(x∗) = δ(x)∗, δ∗(x∗) = δ∗(x)∗. Taking
their powers δk and δk

∗ , k = 0, 1, 2, . . . , we shall set for convenience δ0(x)=δ0
∗(x)=x.

Note that if δ : A → L(H) is a morphism, then

UU∗ = δ(1) = δ(12) = δ2(1) = (UU∗)2

so that U is a partial isometry.
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In [1] the authors considered the C∗-algebra C∗(A , U) generated by A and U
under the additional assumption that A be the coefficient algebra of the algebra
C∗(A , U); this meant that A had the following three properties:

A 3 a→ δ(a) = UaU∗ ∈ A , (4)
A 3 a→ δ∗(a) = U∗aU ∈ A , (5)

Ua = δ(a)U, a ∈ A . (6)

As shown in [1], algebras with properties (4)–(6) do indeed play the role of
‘coefficients’ of C∗(A , U); namely, it is proved in Proposition 2. 4 of [1] that if a
∗-algebra A and U satisfy conditions (4)–(6), then the vector space of finite sums

x = U∗aN + · · ·+ U∗a1 + a0 + a1U + · · ·+ aNUN , (7)

where ak, ak ∈ A and N ∈ N ∪ {0}, is a dense ∗-subalgebra of the C∗-algebra
C∗(A , U).

It is useful to observe that (6) also has another equivalent form, as stated by the
following proposition.

Proposition 1.5 (see [1], Proposition 2. 2). Let A be a C∗-subalgebra of L(H), let
1 ∈ A and U ∈ L(H). Then the following conditions are equivalent :

(i) Ua = δ(a)U , a ∈ A ;
(ii) U is a partial isometry and

U∗U ∈ A ′, (8)

where A ′ is the commutant of A ;
(iii) U∗U ∈ A ′ and δ : A → δ(A ) is a morphism.

It follows from condition (6) that the map δ(a) = UaU∗, a ∈ A , is a morphism.
Hence each coefficient algebra is associated with an endomorphism δ generated by
a partial isometry U .

In [1] the authors explained how an algebra satisfying conditions (4)–(6) can be
constructed from some initial algebra satisfying only some or even none of these
conditions. Here we present the part of this construction we require, for the case
of a commutative algebra A .

Let

E∗(A ) =
{ ∞⋃

n=0

δn
∗ (A )

}
(9)

be the C∗-algebra generated by
⋃∞

n=0 δn
∗ (A ).

Remark 1.6. Recalling the algebras B and A from Examples 1.2 and 1.3 above we
note that

B = E∗(A ).

For this reason the algebra E∗(A ) in (9) with be of crucial importance for our
analysis of the problem under consideration.



1626 B.K. Kwaśniewski and A. V. Lebedev

The following result was established in [1], Proposition 4. 1.

Proposition 1.7. Let A be a commutative C∗-subalgebra of L(H) containing 1.
Let δ be an endomorphism of A and let U∗U ∈ A ′. Then the C∗-algebra

E∗(A ) =
{ ∞⋃

n=0

δn
∗ (A )

}
is a minimal commutative coefficient algebra for C∗(A , U) and both

δ : E∗(A )→ E∗(A ) and δ∗ : E∗(A )→ E∗(A )

are endomorphisms.

Here δ : E∗(A ) → E∗(A ) is the extension of the endomorphism δ : A → A
and δ∗ plays the role of its inverse.

This result is the starting point for the C∗-algebraic analysis of the objects
that are under consideration in this paper. In particular, in combination with the
discussion above, it leads us to the natural problem of describing the maximal ideal
space of the coefficient algebra E∗(A ) in terms of the maximal ideal space of the
algebra A and the action δ. To solve this problem is one of the central aims of this
paper.

We point out that [2] contains several concrete examples of the maximal ideal
space E∗(A ) for A = C[a, b], when δ is generated by a continuous map with
a special form

α : [a, b]→ [a, b].

Remark 1.8. The role of coefficient algebras in the C∗-theory is fairly important
since they are the major structural elements of crossed products associated with
endomorphisms (see [3]–[5]). Hence the solution of the above-mentioned problems
also allows us to construct the corresponding crossed products in a natural fashion
(see [4]).

The paper is organized as follows. In § 2 we introduce the concepts and notation
required for what follows and also present several facts (mostly known) about the
structure of endomorphisms of commutative algebras and discuss their relations to
dynamical systems. Our main result, the description of the maximal ideal space
of the algebra E∗(A ), is obtained in § 3. On its basis, in § 4 we give a complete
description of the reversible extensions of C∗-dynamical systems and the corre-
sponding reversible extensions of dynamical systems. Finally, in § 5 we look at sev-
eral examples demonstrating, in particular, the relation of our results here to several
classical objects of the theory of dynamical systems.

This paper is an extended and recast presentation of the e-print [6].

§ 2. Endomorphisms of commutative
C∗-algebras and dynamical systems

The objects we start from are a commutative C∗-algebra A with unity 1 and an
endomorphism δ : A → A .

Our first observation, Theorem 2.2, is that each endomorphism δ gives rise to
a continuous partial map of the maximal ideal space M = M(A ) of the algebra A .
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Remark 2.1. This theorem is a special case of the general result describing the
endomorphisms of semisimple Banach algebras (see [7], § 2), and we present its
proof for completeness.

By the Gelfand-Nǎımark theorem the Gelfand transform establishes an isomor-
phism A ∼= C(M), therefore we shall identify A and C(M) throughout.

Theorem 2.2. Let A be a commutative C∗-algebra with unity 1 ∈ A and let δ be
an endomorphism of A . Consider the subset ∆ of M defined by the condition

τ ∈ ∆ ⇐⇒ τ(δ(1)) = 1, (10)

where τ is a multiplicative functional on A . Then
(i) the set ∆ is clopen (open and closed);
(ii) the endomorphism δ can be defined by the formula

(δf)(x) =

{
f(α(x)), x ∈ ∆,

0, x /∈ ∆,
(11)

where f ∈ C(M) and α : ∆→M is a continuous map.

Proof. We shall verify that ∆ is clopen. Note that δ(1) = δ2(1), so the function
δ(1) ∈ C(M) is an idempotent and can take only values 0 and 1. This proves that
∆ is closed and open.

In terms of the Gelfand transform a→ â we can define an action of δ on C(M)
by the formula

(δâ)(τ) = τ(δ(a)) = â(δ∗(τ)), τ ∈M, (12)

where δ∗ : A∗ → A∗ is the operator adjoint to δ. Clearly,

δ∗(τ) = τ ◦ δ (13)

is a multiplicative functional, and δ∗(τ)(1) = τ(δ(1)). By the definition of ∆ we
obtain

τ /∈ ∆ =⇒ δ∗(τ) ≡ 0, (14)
τ ∈ ∆ =⇒ δ∗(τ) ∈M. (15)

Now defining the map α : ∆ −→M to be the restriction of δ∗:

α = δ∗
∣∣
∆
, (16)

we arrive at the required result.

Proposition 2.3. Under the assumptions of Theorem 2.2 let α : ∆ → M be the
map defined by formula (11). Then the following results hold :

(i) if ker δ = {0}, then α : ∆→M is surjective;
(ii) if δ(1) = 1, then ∆ = M .

Proof. Let ker δ={0}. Then δ is an injection which has a right inverse % : δ(A )→A .
Hence

%(δ(a)) = a, a ∈ A . (17)
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For each τ ∈ M the functional τ ◦ % is defined on δ(A ), is non-trivial and multi-
plicative. Hence it has an extension τ1 ∈M to A (see [8], § 2.10.2) and therefore

τ1 ◦ δ = τ. (18)

Then it follows from (13) and (16) that α is surjective.
Now let δ(1) = 1. This means that τ(δ(1)) = 1 for each τ ∈ M . Thus, (10)

yields ∆ = M . The proof is complete.

In view of Theorem 2.2, the following definition of a (partial) dynamical system
looks natural.

Definition 2.4. By a (partial) dynamical system we shall mean a triple (M,∆, α),
where M is a compact topological space, ∆ a clopen subset of M , and α : ∆→M
a continuous map. Unless a misunderstanding can arise, for brevity we shall also
use the notation (M,α).

Remark 2.5. 1) When we talk about a dynamical system it is more usual to imply
that the map α is defined on the whole of M , which is the case (M,M,α) in our
terms.

2) By Theorem 2.2 each endomorphism δ of the algebra C(M) defines uniquely
a partial dynamical system (M,∆, α). It is also clear that an arbitrary partial
dynamical system (M,∆, α) uniquely defines an endomorphism δ of the algebra
C(M) (by formula (11)). Thus, in effect Theorem 2.2 describes a bijective corres-
pondence between endomorphisms of C(M) and partial dynamical systems.

Definition 2.6. We shall say that a partial dynamical system (M,∆, α) is revers-
ible if α(∆) is an open subset of M and the map α : ∆→ α(∆) is a homeomorphism.

Definition 2.7. Let (M,∆, α) be a partial dynamical system. By a reversible
extension of this system we mean a partial dynamical system (M̃, ∆̃, α̃) with the
following properties:

(i) (M̃, ∆̃, α̃) is a reversible partial dynamical system;
(ii) there exists a continuous surjective map Ψ: M̃ → M which realises a semi-

conjugacy between (M̃, ∆̃, α̃) and (M,∆, α), that is, which satisfies the con-
ditions

Ψ(∆̃) = ∆, Ψ(M̃ \ ∆̃) = M \∆, Ψ(M̃ \ α̃(∆̃)) = M \ α(∆), (19)

α(Ψ(x̃)) = Ψ(α̃(x̃)), x̃ ∈ ∆̃. (20)

The problems under consideration in this paper concern the constructions of
reversible extensions of dynamical systems.

Now we return to the C∗-algebraic interpretation of the objects in question.
Throughout this section A is a C∗-subalgebra of the algebra L(H) containing the
identity operator 1 and U ∈ L(H) is an operator such that the map

δ(a) = UaU∗, a ∈ A , (21)

is an endomorphism of A (which means, in particular, that U is a partial isometry).
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Note that after applying the endomorphism δ n times we obtain

UnU∗n = δn(1) = δn(12) = (δn(1))2 = (UnU∗n)2,

which means that Un is a partial isometry, so that U is a power partial isometry.
The explicit form (21) of δ and the equivalence (10) allow us to rewrite Theo-

rem 2.2 for the objects under consideration in the following form.

Theorem 2.8. Let A ⊂ L(H) be a commutative C∗-algebra containing the identity
operator 1, and let δ(a) = UaU∗ be an endomorphism of A . Then

(i) the set ∆ = {τ ∈M : τ(UU∗) = 1} is clopen ;
(ii) on the maximal ideal space M the endomorphism δ can be defined by the

formula

(δf)(x) =

{
f(α(x)), x ∈ ∆,

0, x /∈ ∆,
(22)

where f ∈ C(M) and α : ∆→M is a continuous map.

Moreover, Proposition 2.3 yields the following result.

Proposition 2.9. Under the assumptions of Theorem 2.8 let α : ∆ → M be the
map defined by formula (22). Then the following results hold :

(i) if U is a unitary operator, then ∆ = M and α : M →M is surjective;
(ii) if U is an isometry, then α : ∆→M is surjective;
(iii) if U∗ is an isometry, then ∆ = M .

As the following theorem demonstrates, the situation described by Theorem 2.8
will be much simpler if, alongside the endomorphism δ in (21), the map

δ∗(a) = U∗aU, a ∈ A , (23)

is also an endomorphism of the algebra A .

Theorem 2.10. Let A be a commutative C∗-subalgebra of L(H) containing the
unity 1, and assume that the maps δ and δ∗ defined by formulae (21) and (23),
respectively, are endomorphisms of A . Let M be the maximal ideal space of A .
Then

(i) the sets ∆1 = {τ ∈ M : τ(UU∗) = 1} and ∆−1 = {τ ∈ M : τ(U∗U) = 1}
are clopen ;

(ii) in terms of the algebra C(M) the endomorphism δ can be defined by the
formula

(δf)(x) =

{
f(α(x)), x ∈ ∆1,

0, x /∈ ∆1,
(24)

where f ∈ C(M) and α : ∆1 → ∆−1 is a homeomorphism ;
(iii) the endomorphism δ∗ can be defined by the formula

(δ∗f)(x) =

{
f(α−1(x)), x ∈ ∆−1,

0, x /∈ ∆−1,
(25)

where f ∈ C(M).
In particular, the dynamical system (M,∆, α) is reversible.
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Proof. By Theorem 2.8 the sets ∆1,∆−1 ⊆M defined by

τ ∈ ∆1 ⇐⇒ τ(UU∗) = 1, (26)
τ ∈ ∆−1 ⇐⇒ τ(U∗U) = 1, (27)

are clopen and there exist continuous maps

α : ∆1 →M and α′ : ∆−1 →M

for which δ and δ∗, respectively, satisfy (22). To finish the proof it is sufficient to
verify that α′ = α−1. This follows from the relations

τ ∈ ∆, a ∈ A =⇒ τ(δ(δ∗(a)) = τ(UU∗)τ(a)τ(UU∗) = τ(a), (28)
τ ∈ ∆−1, a ∈ A =⇒ τ(δ∗(δ(a)) = τ(U∗U)τ(a)τ(U∗U) = τ(a), (29)

which are equivalent to the equality (α′ ◦ α)(τ) = (α ◦ α′)(τ) = τ . The proof is
complete.

In view of the above results, the following definition is natural.

Definition 2.11. By a C∗-dynamical system we mean a pair (A , U), where A is
a commutative C∗-subalgebra of L(H) containing the identity operator 1 and
U ∈ L(H) is an operator satisfying two conditions:

1) the map
δ(a) := UaU∗, a ∈ A , (30)

is an endomorphism of the algebra A ;

2) U∗U ∈ A . (31)

Remark 2.12. As we have already pointed out, condition 1) means that U is a par-
tial isometry.

2.1. C∗-dynamical systems and partial dynamical systems. Now we dis-
cuss the relationship between C∗-dynamical systems and partial dynamical systems.

Let (A , U) be a C∗-dynamical system and M = M(A ) be the maximal ideal
space of the algebra A . The system (A , U) determines uniquely the partial dynami-
cal system (M,∆, α) described in Theorem 2.8, and condition (31) means that α(∆)
is a clopen set, because the projection U∗U ∈ A can be defined in terms of the
characteristic function of the set α(∆) (cf. formula (27)).

The converse result also holds. To state it we require the following definition.

Definition 2.13. Let (M,∆, α) be a partial dynamical system. We shall say that
a C∗-dynamical system (A , U) corresponds to (M,∆, α) (or that (A , U) is a covari-
ant representation of the system (M,∆, α)) if the maximal ideal space M(A ) of
the algebra A equals M and the endomorphism δ( · ) = U( · )U∗ is defined by
formula (22).

Below (in § 4.2) we show that for each partial dynamical system (M,∆, α) such
that α(∆) is a clopen set there exists a C∗-dynamical system (A , U) corresponding
to (M,∆, α).
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Remark 2.14. If there exists a C∗-dynamical system (A , U) corresponding to
a fixed partial dynamical system (M,∆, α), then it cannot be unique; in partic-
ular, if for a fixed algebra A the operator U generates an endomorphism δ of the
form (22), then for each λ, |λ| = 1, the operator λU generates the same endomor-
phism. However we should note at this point that the objects under consideration
in this paper can be described equivalently by any C∗-dynamical system corres-
ponding to a fixed partial dynamical system (M,∆, α) (cf. Remark 3.6).

Definition 2.15. We say that a C∗-dynamical system (A , U) is reversible if,
besides condition 1) in Definition 2.11, it also satisfies the following condition:
the map

δ∗(a) = U∗aU, a ∈ A , (32)

also is an endomorphism of the algebra A . (Clearly, condition 2) in Definition 2.11
holds automatically in this case.)

Remark 2.16. In view of Theorem 2.10, it is natural to say here that the endomor-
phisms δ and δ∗ are mutually inverse.

Definition 2.17. Let (A , U) be a C∗-dynamical system. We shall say that a C∗-
dynamical system (B, U) (with the same operator U) is a reversible extension of
(A , U) if the following two conditions are fulfilled:

(i) A ⊂ B;
(ii) the C∗-dynamical system (B, U) is reversible.
In this case it is natural to call (A , U) a subsystem of the system (B, U).

2.2. Reversible extensions of C∗-dynamical systems and of dynamical
systems. Now we discuss connections between reversible extensions of C∗-
dynamical systems and reversible extensions of dynamical systems.

Let (A , U) be a C∗-dynamical system and (B, U) its reversible extension. Let
(M,∆, α) be the dynamical system determined by the system (A , U) in accordance
with § 2.1, and let (M̃, ∆̃, α̃) be the dynamical system determined by (B, U). The-
orem 2.10 states that the dynamical system (M̃, ∆̃, α̃) is reversible. Consider the
map Ψ: M̃ →M defined by the formula

Ψ(x̃) = x̃
∣∣
A

; (33)

here x̃
∣∣
A

is the restriction of the multiplicative functional x̃ ∈ M̃ to the subalge-
bra A . Since 1 ∈ A , it follows that Ψ(x̃) is a non-trivial multiplicative functional,
that is, Ψ(x̃) ∈ M . Moreover, each multiplicative functional y ∈ M extends to
a multiplicative functional ỹ ∈ M̃ (see [8], Proposition 2. 10. 2), therefore Ψ is
surjective. Furthermore, it follows from the definitions of Ψ, ∆ and ∆̃ and from
Theorem 2.8,(i) that

Ψ(∆̃) = ∆, Ψ(M̃ \ ∆̃) = M \∆,

and it follows from formulae (13) and (16) that all the other equalities in (19) and
(20) also hold. Thus, Ψ defines a semiconjugacy between (M̃, ∆̃, α̃) and (M,∆, α),
so that (M̃, ∆̃, α̃) is an invertible extension of (M,∆, α).
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Thus, we have shown that a reversible extension of a C∗-dynamical system
(A , U) generates a reversible extension of the partial dynamical system (M,∆, α)
determined by the former.

If we now recall Proposition 1.7 in combination with the above considerations,
we see that it indicates a unique possible C∗-algebraic candidate for the role of
reversible extension of the C∗-dynamical system (A , U), namely the C∗-dynamical
system (E∗(A ), U).

So, in the next section we shall start our investigations by describing the maximal
ideal spaces of the algebra E∗(A ).

Remark 2.18. In connection with the questions and the objects we are looking at in
this paper, we also mention some lines of research in analysis with their origins
in physics that have a similar mathematical ‘philosophy’ in some respects.

One method of establishing relations between quantum mechanics and classi-
cal mechanics is to treat quantum mechanics as a certain non-commutative ‘lift’
of (commutative) classical mechanics. Then a classical dynamical system can be
obtained from the corresponding quantum system by a certain average (projec-
tion) of it: classical mechanics is a ‘shadow’ of quantum mechanics. The reverse
procedure (finding a quantum ‘lift’ of a classical dynamical system) is called the
quantization of the dynamical system.

In this paper we discuss problems related to constructing reversible extensions
of dynamical systems. In the light of the ‘philosophy’ presented above such con-
structions can be regarded as reversible ‘quantizations’ of the original irreversible
dynamical systems.

Another class of problems, also with ‘quantum’ origins, is related to the so-called
problem of ‘hidden parameters’. It is connected with the conjecture that the
probabilistic (and therefore, in fact, irreversible) nature of the axioms of quan-
tum mechanics is a consequence of our ignorance (inability to find values) of some
hidden parameters, and once these are found, the probabilistic quantum picture will
recover its ‘original’ deterministic form (that is, it will transform into a picture of
the same kind as classical mechanics). The problem of hidden parameters has not
been solved yet and, anyway, it is clear that the number of these parameters, if they
were actually discovered, would be very large, so that the ‘original’ deterministic
form must be extremely complicated. From this point of view, the construction of
reversible extensions of irreversible dynamical systems can be regarded as finding
the hidden parameters, and recovering the ‘original’ reversible form of a dynam-
ical system. We find these hidden parameters in this paper (they are described by
formula (60) in Theorem 3.5).

§ 3. Maximal ideal space of a commutative coefficient algebra

In this section we fix a commutative C∗-subalgebra A ⊂ L(H), 1 ∈ A , and
a partial isometry U ∈ L(H) such that the map (21) is an endomorphism of A
and U∗U ∈ A ′. Our aim is to describe the maximal ideal space M(E∗(A )) of the
coefficient C∗-algebra E∗(A ) =

{⋃∞
n=0 δn

∗ (A )
}

(see Proposition 1.7) in terms of
the maximal ideal space M = M(A ) of the algebra A and the action δ defined by
formula (22).
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We start by introducing the requisite objects and notation.
Let x̃ ∈ M(E∗(A )) be a multiplicative linear functional on E∗(A ). Consider

the sequence of functionals ξnex : A → C, n = 0, 1, . . . , defined by

ξnex (a) = δn
∗ (a)(x̃), a ∈ A . (34)

Since E∗(A ) =
{⋃∞

n=0 δn
∗ (A )

}
, the sequence ξnex determines x̃ uniquely. On the

other hand, since δ∗ is an endomorphism of E∗(A ), the functionals ξnex are linear
and multiplicative on A (but it is possible that ξnex = 0). Thus, we either have

ξnex = xn ∈M, (35)

or
ξnex = 0. (36)

Obviously, the map
x̃→ (ξ0ex, ξ1ex, . . . ) (37)

is injective.
Let (M,∆, α) be a dynamical system defined by an endomorphism

δ( · ) := U( · )U∗

in accordance with Theorem 2.8. We shall use the following sets. Let

∆n = α−n(M), n = 0, 1, 2, . . . , (38)

so that ∆n is the domain of definition of αn, and let

∆−n = αn(∆n), n = 1, 2, . . . , (39)

be the image of αn.
Then we have

αn : ∆n → ∆−n, (40)

αn(αm(x)) = αn+m(x), x ∈ ∆n+m. (41)

In terms of multiplicative functionals the sets ∆n can be defined as follows: for
n > 0,

τ ∈ ∆n∗ ⇐⇒ ∀0<k6n τ(UkU∗k) = 1, (42)
τ ∈ ∆−n∗ ⇐⇒ ∃τn∈∆n τn ◦ δn = τ. (43)

Note that the projections UkU∗k form a decreasing sequence, therefore if
τ(UnU∗n) = 1, then τ(UkU∗k) = 1 for k < n. Hence we can write condition (42)
also as

τ ∈ ∆n ⇐⇒ τ(UnU∗n) = 1. (44)

Remark 3.1. In the case considered in Theorem 2.10 the sets ∆−n are in effect the
domains of definition of the map α−n. Moreover, in terms of maximal ideals we
have the equivalences

τ ∈ ∆n ⇐⇒ τ(UnU∗n) = 1, (45)
τ ∈ ∆−n ⇐⇒ τ(U∗nUn) = 1, (46)

where n > 0.
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The next result is a first step of the description of the maximal ideal space
M(E∗(A )).

Theorem 3.2 (an ‘upper bound’ for a maximal ideal space). Let A ⊂ L(H) be
a commutative C∗-subalgebra, 1 ∈ A . Let δ(a) = UaU∗ be an endomorphism
of A , U∗U ∈ A ′, let α : ∆ → M(A ) be the partial map defined by formula (22),
and let ∆n be the sets defined in (38) and (39). Then the maximal ideal space
M(E∗(A )) of the algebra E∗(A ) is homeomorphic to a subset of a countable sum
of disjoint sets ; more precisely, the map (37) (taking account of Remarks (35)
and (36)) defines a topological embedding

M(E∗(A )) ↪→
∞⋃

N=0

MN ∪M∞, (47)

where the MN are sets of the following form :

MN =
{
x̃ = (x0, x1, . . . , xN , 0, . . . ) : xn ∈ ∆n, α(xn) = xn−1, n = 1, . . . , N

}
and M∞ is defined by the condition

M∞ =
{
x̃ = (x0, x1, . . . ) : xn ∈ ∆n, α(xn) = xn−1, n ∈ N

}
.

The topology in MN , N ∈ N ∪ {0}, and M∞ is generated by the neighbourhoods of
points x̃ ∈MN of the form

O(a1, . . . , ak, ε) =
{
ỹ ∈MN : |ai(xN )− ai(yN )| < ε, i = 1, . . . , k

}
(48)

and neighbourhoods of points x̃ ∈M∞ of the form

O(a1, . . . , ak, n, ε) =
{

ỹ ∈
∞⋃

N=n

MN ∪M∞ : |ai(xn)− ai(yn)| < ε, i = 1, . . . , k

}
,

(49)
where ε > 0, ai ∈ A and k, n ∈ N ∪ {0}.

Proof. We pointed out above that the map (37) is injective. One of the two following
situations is possible on the right-hand side of (37).

1) Assume first that some functionals ξnex are trivial. Let N be the first index
such that

ξN+1ex ≡ 0.

Note that for each n ∈ N we have

ξnex 6= 0 ⇐⇒ x̃(U∗nUn) = 1, (50)

and {U∗nUn}n∈N is a decreasing sequence of commuting projections (see [1],
Proposition 3. 6), that is, for i 6 j,

U∗iU iU∗jU j = U∗jU jU∗iU i = U∗jU j .

Hence for each n > N we obtain

x̃(U∗nUn) = x̃(U∗N+1UN+1U∗nUn) = x̃(U∗N+1UN+1)x̃(U∗nUn) = 0,

that is, ξnex ≡ 0 for n > N .
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Since ξnex 6= 0 for 0 6 n 6 N , there exists xn ∈M(A) such that

ξnex (a) = a(xn), a ∈ A , (51)

so that the map (37) (recall (35) and (36)) has the form x̃ 7→ (x0, x1, . . . , xN , 0, . . . ).
Moreover, since all the U∗iU i and U jU∗j commute, it follows that

U∗nUnU∗n−1 = U∗n−1(U∗U)(Un−1U∗n−1) = (U∗n−1Un−1U∗n−1)U∗U = U∗nU,

Un−1U∗nUn = (Un−1U∗n−1)(U∗U)Un−1 = U∗U(Un−1U∗n−1Un−1) = U∗Un.

Hence from the equalities x̃(U∗nUn) = 1, which hold for all n = 1, . . . , N , we
conclude that for all a ∈ A and 0 < n 6 N we have

a(xn−1) = ξn−1ex (a) = x̃(δn−1
∗ (a)) = x̃(U∗nUn)x̃(δn−1

∗ (a))x̃(U∗nUn)

= x̃(U∗nUnU∗n−1aUn−1U∗nUn) = x̃(U∗nUaU∗Un) = x̃(δn
∗ (δ(a)))

= ξnex (δ(a)) = δ(a)(xn) = a(α(xn)),

where we have used (51) and (22) in the last two equalities. Since the algebra A
separates the points in M(A ), it follows that

α(xn) = xn−1, n ∈ N. (52)

Consequently,
xn ∈ ∆n, 0 6 n 6 N, (53)

and therefore
x̃ 7→ (x0, x1, . . . , xN , 0, . . . ) ∈MN .

2) Now assume that for each n ∈ N we have

ξnex 6= 0,

that is, ξnex ∈M(A ). Selecting xn ∈M(A ) from (51) we see that the map (37) has
the form x̃ 7→ (x0, x1, x2, . . . ).

Using the same arguments as in case 1) we establish the equality

α(xn) = xn−1, n > 1. (54)

From the definition of ∆n, n ∈ Z, we obtain

xn ∈ ∆n, n ∈ N. (55)

Hence
x̃ 7→ (x0, x1, x2, . . . ) ∈M∞.

Now recall that the map (37) is injective and, as shown above, the right-hand
side of (37) belongs to MN or M∞ (depending on x̃). This means that (37) defines
an embedding (47).

Finally, we note that M(E∗(A )) carries the weak-∗ topology. Hence a point
x̃ = (x0, x1, . . . ) ∈M∞ has a fundamental system of neighbourhoods of the form

O(b1, . . . , bk, ε) =
{
ỹ ∈M(E∗(A )) : |bi(x̃)− bi(ỹ)| < ε, i = 1, . . . , k

}
, (56)
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where bi ∈ E∗(A ), ε > 0. Since E∗(A ) = {
⋃∞

n=0 δn
∗ (A )}, it is sufficient to take

bi = δn
∗ (ai), ai ∈ A , i = 0, . . . , k, in (56) so that we obtain

O(b1, . . . , bk, ε) =
{
ỹ ∈M(E∗(A )) : |δn

∗ (ai)(x̃)− δn
∗ (ai)(ỹ)| < ε, i = 1, . . . , k

}
=

{
ỹ = (y0, y1, . . . ) ∈M(E∗(A )) : |ai(xn)− ai(yn)| < ε, i = 1, . . . , k

}
.

Setting O(a1, . . . , ak, n, ε) = O(b1, . . . , bk, ε) ∩
(⋃

N>n MN ∪ M∞
)

we obtain the
neighbourhood basis required in the theorem.

For x̃ = (x0, x1, . . . , xN , 0, . . . ) ∈MN we set

O(a1, . . . , ak, ε) = O(a1, . . . , ak, N, ε) ∩MN .

Thus, formulae (48) and (49) define a neighbourhood basis of a point

x̃ ∈M(E∗(A )) ↪→
∞⋃

N=0

MN ∪M∞,

which completes the proof of the theorem.

Remark 3.3. It is useful to note that the set of operators of the form

b = a0 + δ∗(a1) + · · ·+ δN
∗ (aN ),

where a0, a1, . . . , aN ∈ A, is dense in E∗(A ) (see [1], Proposition 3. 8). Hence
from (51), the definition of the functionals generating the sequence x̃ = (x0, . . . ),
we conclude that

b(x̃) = a0(x0) + a1(x1) + · · ·+ aN (xN )

for x̃ = (x0, . . . ) ∈
⋃∞

n=N Mn ∪M∞ and

b(x̃) = a0(x0) + a1(x1) + · · ·+ an(xk),

for x̃ = (x0, . . . , xk, 0, . . . ) ∈
⋃N

n=0 Mn.

The theorem just proved provides an ‘upper bound’ for the space M(E∗(A )).
Theorem 3.4, which follows, yields a ‘lower bound’. Before stating it we
emphasize that the previous theorem claims that each x̃ ∈M(E∗(A )) generates
(defines uniquely) a point in MN or M∞. On the other hand, for a sequence
(x0, x1, . . . , xN , 0, . . . ) ∈ MN or (x0, x1, . . . , xn, . . . ) ∈ M∞, we do not know in
advance that it is generated by some x̃ ∈M(E∗(A )) (this only holds if the sequence
has the form (37)). Theorem 3.4 says that all sequences in the subset M̂N of MN

(which may be much smaller than MN in the general case) and all sequences in M∞
are indeed generated by some elements x̃ ∈M(E∗(A )).

Theorem 3.4 (a ‘lower bound’ for a maximal ideal space). Let A ⊂ L(H) be
a commutative C∗-algebra, 1 ∈ A , and let U ∈ L(H) be a partial isometry such
that U∗U ∈ A ′. By Theorem 3.2, M(E∗(A )) can be regarded as a subset of the
space

⋃
N>0 MN ∪M∞; on the other hand

∞⋃
N=0

M̂N ∪M∞ ⊂M(E∗(A )), (57)
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where the M̂N are the sets of the following form :

M̂N =
{
x̃ = (x0, x1, . . . , xN , 0, . . . ) : xN ∈ ∆N , xN /∈ ∆−1, α(xn) = xn−1

}
and M∞ =

{
x̃ = (x0, x1, . . . ) : xn ∈ ∆n, α(xn) = xn−1, n > 1

}
.

Proof. First, we will show that M∞ ⊂ M(E∗(A )). Let (x0, x1, . . . ) be a sequence
of elements of M(A ) such that α(xn) = xn−1 for each n > 1. We claim that there
exists a multiplicative linear functional x̃ ∈ M(E∗(A )) generating this sequence
(that is, the equalities (51) hold for n = 0, 1, 2, . . . with ξnex defined by (34)).

In fact, consider the sets

X̃n =
{
x̃ ∈M(E∗(A )) : ∀a∈A ξnex (a) = a(xn)

}
, n = 0, 1, . . . , (58)

with ξnex defined by (34). Then
1) X̃n 6= ∅. This is because (58) is the set of all extensions of multiplicative

functionals from δn
∗ (A ) to E∗(A ). As is known, each multiplicative func-

tional on a commutative C∗-subalgebra can be extended to a multiplicative
functional on any larger commutative C∗-algebra (see [8], § 2.10.2);

2) X̃n is closed, as follows from the definition of weak-∗ convergence;
3) X̃0 ⊃ X̃1 ⊃ · · · ⊃ X̃n ⊃ · · · . Indeed, if x̃ ∈ X̃n, then

a(xn−1) = a(α(xn)) = δ(a)(xn) = ξnex (δ(a)) = ξn−1ex (a), a ∈ A ,

that is, x̃ ∈ X̃n−1.
Thus, the family of sets X̃n forms a decreasing sequence of non-empty compact

sets, and therefore
⋂∞

n=0 X̃n 6= ∅. It follows from the definition of the X̃n that
each point x̃ ∈

⋂∞
n=0 X̃n generates the same sequence

(ξ0ex, ξ1ex, ξ2ex, . . . ) = (x0, x1, x2, . . . ).

However, as already pointed out, the map

x̃→ (ξ0ex, ξ1ex, ξ2ex, . . . )

is injective, and therefore the set
∞⋂

n=0

X̃n = {x̃}

reduces to a singleton.
Now let (x0, x1, . . . , xN , 0, . . . ) ∈ M̂N . Consider the sets X̃n defined by (58)

for n = 0, 1, . . . , N . The above arguments show that these are non-empty sets
forming a decreasing sequence. Let x̃ ∈ X̃N . To identify x̃ with the sequence
(ξ0ex, ξ1ex, . . . , ξNex , 0, . . . ) = (x0, x1, . . . , xN , 0, . . . ) defined in (37) it is sufficient to
show that

ξN+1ex ≡ 0.

Assume by contradiction that ξN+1ex 6= 0. Then we see from part 1) of the proof
of Theorem 3.2 that x̃ = (x0, x1, . . . , xN , xN+1, . . . ), where α(xN+1) = xN , which
contradicts the relation xN /∈ ∆−1 = α(∆1). The proof is complete.
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In the general case neither of the inclusions (47) and (57) in Theorems 3.2 and 3.4
is an equality. However, the following result demonstrates that in the case when A
contains an element δ∗(1) = U∗U we have equality in (57), so this formula describes
completely the maximal ideal space M(E∗(A )).

Theorem 3.5 (a maximal ideal space: a complete description). Let A ⊂ L(H)
be a commutative C∗-algebra with unity. Let δ( · ) = U( · )U∗ be an endomorphism
of A and, moreover, let

U∗U ∈ A . (59)

Then the maximal ideal space M(E∗(A )) of E∗(A ) is homeomorphic to the count-
able disjoint sum of the clopen sets M̂N and the closed set M∞ (some of these sets
may be empty)

M(E∗(A )) =
∞⋃

N=0

M̂N ∪M∞, (60)

where

M̂N =
{
x̃ = (x0, x1, . . . , xN , 0, . . . ) : xN ∈ ∆N , xN /∈ ∆−1, α(xn) = xn−1

}
,

M∞ =
{
x̃ = (x0, x1, . . . ) : xn ∈ ∆n ∩∆−∞, α(xn) = xn−1, n > 1

}
.

The topology on
⋃∞

N=0 M̂N ∪M∞ is defined by a fundamental system of neighbour-
hoods of points x̃ ∈ M̂N of the form

O(a1, . . . , ak, ε) =
{
ỹ ∈ M̂N : |ai(xN )− ai(yN )| < ε, i = 1, . . . , k

}
(61)

and of neighbourhoods of points x̃ ∈M∞ of the form

O(a1, . . . , ak, n, ε) =
{

ỹ ∈
∞⋃

N=n

M̂N ∪M∞ : |ai(xn)− ai(yn)| < ε, i = 1, . . . , k

}
,

where ε > 0, ai ∈ A and k, n ∈ N ∪ {0}.

Proof. It follows from Theorems 3.2 and 3.4 that to prove equality (60) it is sufficient
to prove the implication

x̃ ∈MN =⇒ x̃ ∈ M̂N

for each x̃ ∈M(E∗(A)). Assume on the contrary that x̃ ∈MN and x̃ /∈ M̂N . Then
x̃ = (x0, x1, . . . , xN , 0, . . . ), xn ∈M(A ), and there exists xN+1 ∈ ∆1 ⊂M(A ) such
that α(xN+1) = xN . It follows from (51) and (34), which define the functionals xn

and ξnex respectively, that x̃(U∗naUn) = a(xn) for all a ∈ A and n = 0, . . . , N and
that x̃(U∗naUn) = 0 for n > N . In particular,

x̃(U∗NUN ) = 1 and x̃(U∗N+1UN+1) = 0.

By formula (22) we obtain

x̃(U∗NaUN ) = a(xN ) = a(α(xN+1)) = δ(a)(xN+1), a ∈ A.

Setting a = U∗U ∈ A we see that δ(U∗U)(xN+1) = 0. On the other hand, for
δ(U∗U)(xN+1) we have

δ(U∗U)(xN+1) = xN+1(UU∗UU∗) = xN+1(UU∗)xN+1(UU∗) = 1.

We have arrived at a contradiction, which proves (60).
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The sets M̂N are closed and open because of the following:

x̃ ∈MN ⇐⇒ x̃ ∈ M̂N ⇐⇒
{
x̃(U∗NUN ) = 1, x̃(U∗N+1UN+1) = 0

}
.

On the other hand, since the M̂N are open, the set M∞ is closed, which completes
the proof of the theorem.

Remark 3.6. Theorem 3.5 demonstrates that the maximal ideal space M(E∗(A ))
in reality only depends on the pair (A , δ) and is independent of the choice of the
operator U defining the endomorphism δ (provided that (59) holds). In other words,
if (M,∆, α) is a partial dynamical system and α(∆) is a closed set, then the space
M(E∗(A )) depends only on the system (M,∆, α) itself, but not on the choice of
its covariant representation (A , U) (see § 2.1 and Definition 2.13).

Remark 3.7. In fact, the above theorem gives us a key to obtaining a complete
description of the space M(E∗(A )) in the general situation when (59) does not
hold. Indeed, if U∗U /∈ A , then we can consider the C∗-algebra A1 = 〈A , U∗U〉
generated by A and U∗U . Since

δ(U∗U) = UU∗UU∗ = δ(1)δ(1) = δ(1) ∈ A ,

it follows that δ : A1 → A . Applying the above theorem to the algebra A1 and the
operator U we obtain a complete description of the space M(E∗(A1)). However,

E∗(A1) = E∗(A ),

and therefore
M(E∗(A1)) = M(E∗(A )).

The results obtained can be refined (simplified) if we know the partial isometry U
has some more special properties. For instance, if U is an isometry: U∗U = 1, then
Proposition 2.9 shows that the map α generated by the endomorphism δ is surjective
and therefore all the sets M̂N are empty. We arrive at the following consequence
of Theorem 3.5.

Corollary 3.8. Let A ⊂ L(H) be a commutative C∗-algebra with unity and let U
be an isometry such that δ( · ) = U( · )U∗ is an endomorphism of A . Then the map
α : ∆ → M(A ) defined by formula (22) is surjective and the maximal ideal space
M(E∗(A )) of the algebra E∗(A) has the following form :

M(E∗(A )) =
{
x̃ = (x0, x1, . . . ) : xn ∈ ∆n, α(xn+1) = xn, n > 0

}
. (62)

Each point x̃ has a fundamental system of neighbourhoods

O(a1, . . . , ak, n, ε) =
{
ỹ ∈M(E∗(A)) : |ai(xn)− ai(yn)| < ε, i = 1, . . . , k

}
,

where n ∈ N ∪ {0}, ε > 0 and ai ∈ A , 1 6 i 6 k.

Remark 3.9. Note that if δ is an automorphism (that is, when ∆ = M(A ) and α is
a homeomorphism), then the map Ψ: M(E∗(A ))→M(A ) of the form Ψ(x̃) = x0

defines a homeomorphism between M(E∗(A )) and M(A ).
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Remark 3.10. We also underline the fundamental connection between the objects
described in Theorem 3.5 and the inverse (projective) limits of sequences of spaces
with maps: the term M∞ on the right-hand side of (60) is just the inverse (projec-
tive) limit of the sequence

M
α←− ∆1

α←− ∆2
α←− · · · . (63)

In particular, if α is surjective, that is, if we are in the situation described by
Corollary 3.8, then

M(E∗(A )) = M∞ = lim←−(M,α),

where on the right-hand side we have the inverse limit of the sequence (63).

§ 4. Extensions of dynamical systems and of algebra endomorphisms

4.1. An extension of a C∗-dynamical system. Now that we have the descrip-
tion of the maximal ideal space of the algebra E∗(A ) given in the previous section,
we can easily obtain a description of a reversible extension of the dynamical system
(M,∆, α) corresponding to the endomorphism δ (see Theorem 2.8). We give this
description below, in Theorem 4.1. To state it we require the following objects,
which we define using the notation of Theorem 3.5:

M̃ := M(E∗(A )) =
∞⋃

N=0

M̂N ∪M∞, (64)

∆̃ := {x̃ ∈ M̃ : x0 ∈ ∆}, (65)

α̃ : ∆̃→ M̃, α̃(x0, x1, . . . ) := (α(x0), x0, x1, . . . ), (66)

where (x0, x1, . . . ) = x̃.
We point out that it follows from (65) and (66) that

α̃(∆̃) = {x̃ ∈ M̃ : x0 ∈ α(∆)}. (67)

Furthermore, we shall consider the surjective map Ψ: M̃ → M defined by the
formula

Ψ(x̃) := x0. (68)

We see from the explicit form of ∆ and α that the map Ψ satisfies conditions (19)
and (20), that is, Ψ brings about a semiconjugacy between (M̃, ∆̃, α̃) and (M,∆, α).

Theorem 4.1. Let A , U and δ be the same algebra, operator, and endomorphism,
respectively, as in Theorem 3.5, and assume that in terms of the maximal ideal
space M of A the endomorphism δ can be defined by formula (22). Then the
map δ: E∗(A ) → E∗(A ), δ( · ) = U( · )U∗, is an endomorphism of the algebra
E∗(A ) (an extension of δ) and δ∗ : E∗(A ) → E∗(A ), δ∗( · ) = U∗( · )U , is also an
endomorphism of the algebra E∗(A ) (inverse to δ).

In terms of the space M̃ in (64) the endomorphism δ is defined by the formula

(δf)(x̃) =

{
f(α̃(x̃)), x̃ ∈ ∆̃,

0, x̃ /∈ ∆̃,
(69)
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where f ∈ C(M̃), ∆̃ and α̃ are defined by formulae (65) and (66); furthermore,
α̃ : ∆̃→ α̃(∆̃) is a homeomorphism, ∆̃ and α̃(∆̃) are clopen subsets of M̃ ; and the
endomorphism δ∗ can be defined by the formula

(δ∗f)(x̃) =

{
f(α̃−1(x̃)), x̃ ∈ α̃(∆̃),
0, x̃ /∈ α̃(∆̃),

(70)

where f ∈ C(M̃), α̃(∆̃) = {x̃ ∈ M̃ : x0 ∈ α(∆)} and for x̃ = (x0, x1, . . . ) ∈ α̃(∆̃)
the map α̃−1 has the form

α̃−1(x0, x1, . . . ) = (x1, . . . ). (71)

In particular, the dynamical system (M̃, ∆̃, α̃) is a reversible extension of the dyn-
amical system (M,∆, α) in the sense of Definition 2.7, where Ψ is equal to the
surjective map (68), and the C∗-dynamical system (E∗(A ), U) is the reversible
extension of the C∗-dynamical system (A , U) that corresponds to the dynamical
system (M̃, ∆̃, α̃) in the sense of Definition 2.13.

Proof. By Proposition 1.7 the maps δ and δ∗ are endomorphisms of the algebra
E∗(A ). Therefore, in accordance with Theorem 2.10, to complete the proof it
remains to show that ∆̃ and α̃ in formula (69) are indeed defined by formulae (65)
and (66). Then (70) and (71) follow automatically.

By Theorem 2.10 the set ∆̃ in formula (69) is defined by the condition

∆̃ = {x̃ ∈ M̃ : x̃(UU∗) = 1}. (72)

It follows from the explicit expression for x̃ (see (34)–(37)) and the description of
the set ∆ given in Theorem 2.8 that

x̃(UU∗) = 1 ⇐⇒ x0(UU∗) = 1 ⇐⇒ x0 ∈ ∆.

Thus, ∆̃ defined by condition (72) coincides with the set defined by (65).
It only remains to demonstrate that the map α̃ in (69) has the form (66).
Note that for a ∈ A and n > 1 we have

δ(δn
∗ (a)) = UU∗naUnU∗ = δ(1)U∗n−1aUn−1δ(1) = δ(1)δn−1

∗ (a). (73)

We fix an arbitrary functional

x̃ ∈ ∆̃, x̃ =: (x0, x1, . . . ), x0 ∈ ∆,

and set
(y0, y1, . . . ) := α̃(x̃). (74)

Next we calculate the yn, n = 0, 1, . . . . From the explicit expressions for the yn

(formulae (34)–(37) for α̃(x̃)), formulae (69), (73) and the explicit expressions for
the xn, n = 0, 1, . . . , we obtain the following equalities for a ∈ A and n > 1:

yn(a) = δn
∗ (a)(α̃(x̃)) = δ(δn

∗ (a))(x̃) =
(
δ(1)δn−1

∗ (a)
)
(x̃)

= δ(1)(x̃)δn−1
∗ (a)(x̃) = δn−1

∗ (a)(x̃) = a(xn−1).

Hence yn = xn−1, n = 1, 2, . . . .
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Using the explicit expression for y0 and, again, formula (69), for each a ∈ A we
obtain

a(y0) = a(α̃(x̃)) = δ(a)(x̃) = δ(a)(x0) = a(α(x0)),

where we have used (22) in the last equality. Hence y0 = α(x0).
Thus, we have explicitly found the map α̃ in formula (69), which completes the

proof of the theorem.

So far, we have assumed (in Theorems 3.5 and 4.1) that there exists an oper-
ator U defining the endomorphism δ, that is, we have assumed the existence of
a C∗-dynamical system (A , U) corresponding to the dynamical system (M,∆, α).
On the other hand, as Theorem 3.5 shows, if U∗U ∈ A (see (59)), then the max-
imal ideal space of the algebra E∗(A ) extending the algebra A does not in fact
depend on the choice of the operator U (provided that it exists). In terms of the
dynamical system (M,∆, α) the condition U∗U ∈ A means simply that the set
α(∆) is open (and therefore clopen). The following question is natural: does there
always exist a C∗-dynamical system (A , U) corresponding to a fixed dynamical
system (M,∆, α)?

The simple construction below demonstrates that if the set α(∆) is open, then
there exists a C∗-dynamical system (B, U) corresponding to the reversible extension
(M̃, ∆̃, α̃) of (M,∆, α) described in Theorem 4.1 and with some subsystem (A , U)
corresponding to the dynamical system (M,∆, α).

4.2. A representation of an extension of a C∗-dynamical system corre-
sponding to an extension of a dynamical system. Let (M,∆, α) be a partial
dynamical system such that α(∆) is an open set. Let (M̃, ∆̃, α̃) be its reversible
extension, where M̃ , ∆̃ and α̃ are defined by formulae (64), (65) and (66), respec-
tively, and the semiconjugacy Ψ is defined by formula (68). Consider the Hilbert
space l2(M̃) (we take a discrete measure on M̃ , with each point having meas-
ure one). In l2(M̃) we define a faithful representation of the algebra B := C(M̃)
by the operators of multiplication by functions a ∈ C(M̃). Let U : l2(M̃)→ l2(M̃)
be the partial isometry defined by the formula

(Uf)(x̃) =

{
f(α̃(x̃)), x̃ ∈ ∆̃,

0, x̃ /∈ ∆̃.
(75)

This formula implies that

UaU∗ = δ(a), U∗aU = δ∗(a), a ∈ B,

where δ and δ∗ are defined by (69) and (70), respectively.
Consider the subalgebra A ⊂ B of functions depending only on the first coor-

dinate x0 of a point x̃ ∈ M̃ , that is, A = {a ∈ C(M̃) : a(x̃) = a(x0)}, where
(x0, x1, . . . ) = x̃ ∈ M̃ . Clearly, M(A ) = M . It follows from (65), (66) and the
definition of the operator U that

U( · )U∗ : A → A , UaU∗ = δ(a), a ∈ A ,

where δ : C(M)→ C(M) takes the form in (11). Moreover, the operator U∗U ∈ A
is the projection corresponding to the characteristic function of the set α(∆).
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Thus, the C∗-dynamical system (B, U) is an extension of the C∗-dynamical
system (A , U) corresponding to the reversible extension (M̃, ∆̃, α̃) of the dynam-
ical system (M,∆, α).

Remark 4.2. 1) It follows from our analysis, in particular, that the condition
‘α(∆) is an open set’ is necessary and sufficient for a C∗-dynamical system (A , U)
corresponding to the dynamical system (M,∆, α) to exist; moreover, it has the
property U∗U ∈ A .

2) For more details of the interior structure and more properties of extensions
of dynamical and C∗-dynamical systems and, in particular, for an analysis of the
properties of the operators U∗nUn the reader can consult [9].

3) A construction of the crossed product generated by endomorphisms of com-
mutative C∗-algebras was put forward in [4], based on the method for constructing
reversible extensions of dynamical system developed here.

§ 5. Examples

In this section we give several examples revealing some relationships between
the algebras considered in this paper and several classical objects from the theory
of dynamical systems. In reality, these examples only involve algebras described in
terms of M∞, that is, they are far from exhausting even the typical C∗-algebras
which arise naturally in the course of reversible extension (whose maximal ideal
space, in accordance with Theorem 3.5, can also contain countably many summands
of other types).

As noted already (see Remark 3.10), in effect the set M∞ is the inverse limit for
the corresponding sequence of spaces with maps. Many authors have investigated
how to describe such spaces; many results in this area can be found in [9]–[18], for
instance; furthermore, a description of reversible extensions of unimodal maps of
a closed line segment was obtained in [19] using the techniques developed in this
paper.

More than anything, the importance of the examples below is that we actually
obtain some descriptions of the maximal ideal spaces and of C∗-dynamical systems
that are reversible extensions of the original non-reversible systems.

Dynamical systems in this section are defined on the whole of the space, therefore
we denote them by pairs of the form (M,α), rather than by triples (M,M,α).

Example 5.1 (a topological Markov chain). We recall the construction of a topo-
logical Markov chain. Let A = (A(i, j))i,j∈{1,...,N} be a square matrix with entries
from the set {0, 1} and assume that A contains no zero rows. We associate with A
two dynamical systems, (XA, σA) and (XA, σA).

The one-sided Markov shift σA acts on the compact space

XA =
{
x = (ξk)k∈N ∈ {1, . . . , N}N : A(ξk, ξk+1) = 1, k ∈ N

}
(the topology on XA is inherited from the Cantor space {1, . . . , N}N) by the rule

(σAx)k = ξk+1, k ∈ N, x ∈ XA. (76)

The map σA is surjective if and only if A contains no zero columns.
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The two-sided Markov shift σA acts on the compact space

XA =
{
(ξk)k∈Z ∈ {1, . . . , N}Z : A(ξk, ξk+1) = 1, k ∈ Z

}
by the rule

(σAx)k = ξk+1, k ∈ Z, x ∈ XA. (77)

The dynamical systems (XA, σA) and (XA, σA) are also called topological Markov
chains.

Proposition 5.2. Assume that the matrix A contains no zero columns and let
(X̃A, σ̃A) be the reversible extension of a dynamical system (XA, σA) that is des-
cribed in Theorem 4.1. Then

(X̃A, σ̃A) ∼= (XA, σA).

Proof. Since A contains no zero columns, the map σA is surjective, therefore in
terms of Theorem 3.5 we have X̃ = X∞ (and furthermore, U∗U = 1). Thus,

X̃ =
{
x̃ = (x0, x1, . . . ), xi ∈ XA, σA(xi) = xi−1, i = 1, 2, . . .

}
.

It follows from (76) that the condition

σA(x) = y, x, y ∈ XA,

just means that
x = (ξ0, ξ1, . . . ), y = (ξ1, ξ2, . . . ),

where A(ξk, ξk+1) = 1, k ∈ N. Hence for each element

x̃ = (x0, x1, . . . ) ∈ X̃

there is a unique sequence
(ξk)k∈Z

such that xi = (ξk)k=−i,...,+∞, i = 0, 1, . . . , and A(ξk, ξk+1) = 1, k ∈ Z, that is,
X̃ ⊂ XA. It is also clear that each sequence (ξk)k∈Z ∈ XA determines a unique
sequence x̃ = (x0, x1, . . . ) ∈ X̃ by the rule described above. Thus, X̃ = XA.

By (66), in our case the map σ̃ : X̃ → X̃ takes the following form:

σ̃(x̃) = (σA(x0), x0, x1, . . . ), x̃ = (x0, x1, . . . ). (78)

In view of the above identification of X̃ and XA, formula (78) becomes

σ̃(x)k = ξk+1, k ∈ Z, x ∈ XA,

so it coincides with (77). The proof is complete.

Remark 5.3. A description of reversible extensions of topological Markov chains
defined by matrices which are allowed to contain zero columns was presented in [9].
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Example 5.4 (the Smale horseshoe and the maximal ideal space of the algebra
corresponding to a reversible extension of a topological Markov chain). In the pre-
vious example we described a reversible extension of a topological Markov chain
(which coincided in a natural fashion with a reversible topological Markov chain).
This description was not explicitly geometrical. We can ask if the topological spaces
and dynamical systems arising in this extension can be described in ‘more explicit’
geometrical terms. We shall show by this example that these objects are closely
related with maps of the Smale horseshoe kind. We recall this construction, which
was put forward by Smale in 1965, giving the first example of a structurally stable
diffeomorphism (the ‘horseshoe map’) with an infinite set of periodic points (see,
for instance, [10], Ch. 4).

The horseshoe map h stretches and bends the unit square S as follows into a fig-
ure similar to a horseshoe. First, S is uniformly contracted in the vertical direction
with coefficient η < 1/2, then it is stretched in the horizontal direction with coeffi-
cient 1/η > 2, and finally it is bent so that the intersection of the horseshoe h(S)
and S consists of two rectangles, as displayed in Fig. 1.

Figure 1. The images of the unit square S under the iterations of the

horseshoe map h.

The set hn(S) ∩ S consists of 2n rectangles of height ηn (see Fig. 1), therefore
H+ :=

⋂∞
n=0 hn(S) is the product of the (horizontal) unit interval by a (vertical)

Cantor-type set. In a similar way, using inverse images (Fig. 2), we see that the set
H− :=

⋂∞
n=1 h−n(S) is the product of a (vertical) unit interval by a (horizontal)

Cantor-type set.

Figure 2. The inverse images of the unit square S under the iterations of

the horseshoe map h.

The horseshoe set H := H+ ∩ H− =
⋂

n∈Z hn(S) is a Cantor-type set. The
horseshoe map h : H → H is a homeomorphism; moreover, we can encode points
in H by two-sided sequences of zeros and ones so that h becomes the two-sided
shift (Fig. 3).

In other words, the ‘horseshoe’ dynamical system (H,h) and the invertible topo-
logical Markov chain (XA, σA), where A =

(
1 1
1 1

)
, are topologically conjugate.
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Figure 3. Encoding points in the horseshoe set H.

In this way we have obtained a geometrical illustration of Proposition 5.2. In
particular, if C is the standard Cantor set on the unit interval and

f(x) := 3x (mod 1), x ∈ C ,

then the dynamical system (C , f) is equivalent to the one-sided topological Markov
chain (XA, σA) with matrix A as above; therefore, recalling Theorem 4.1 we con-
clude that the horseshoe dynamical system (H,h) is a reversible extension of the
dynamical system (C , f), and as regards the horseshoe set H , it is the maximal ideal
space of the algebra corresponding to the reversible extension of the corresponding
C∗-dynamical system.

Remark 5.5. Different dynamical systems may involve different types of horseshoe
maps (which in our opinion could naturally be called maps of coil-pipe type). Using
the above procedure we can obtain various descriptions of reversible extensions of
topological Markov chains and the corresponding C∗-dynamical systems (Fig. 4;
see [10]).

Figure 4. The image of the unit square in the geometrical representation

of the reversible topological Markov chain (XA, σA) defined by the matrix

A =
“

1 1 1
1 1 1
1 0 0

”
.

Example 5.6 (the n-adic solenoid). We finish by giving examples of dynamical sys-
tems leading to n-adic solenoids.

We recall how these objects are constructed. Fix n = 1, 2, 3, . . . . Let

S1 = {z ∈ C : |z| = 1}

be the unit circle and
D2 = {z ∈ C : |z| 6 1}
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be the unit disc. By definition the n-adic solenoid Sn is the attractor of the map Fn

acting on the solid torus T = S1 ×D2 by the formula

Fn(z1, z2) =
(

zn
1 , λz2 +

n− 1
n

z1

)
,

where 0 < λ < 1/n is fixed. In effect, the image of Fn is a solid torus wound
n times round itself and inscribed in T . It follows from this definition that the
n-adic solenoid is the set

Sn =
⋂
k∈N

F k
n (T ).

Locally, the solenoid is the product of an interval by a Cantor-type set. The solenoid
map Fn : Sn → Sn is a homeomorphism. Let p : T → S1. p(z1, z2) = z1, be the
projection onto the first coordinate. It is known (see, for instance, [11], Section 1. 9)
that the map

Sn 3 s 7−→
(
p(s), p(F−1(s)), . . . , p(F−k(s)), . . .

)
∈

∏
k∈N

S1

establishes a topological conjugacy between (Sn, Fn) and the dynamical system
formed by the inverse limit lim←−(S1, gn) with respect to the winding map gn(z)=zn,
z ∈ S1, and the corresponding induced homeomorphism. In other words, by Theo-
rems 3.5 and 4.1, the n-adic solenoid Sn and the map Fn form a reversible exten-
sion of the dynamical system (S1, gn), where gn(z) = zn, z ∈ S1; and the solenoid
itself, Sn, is the maximal ideal space of the algebra corresponding to the reversible
extension of the corresponding C∗-dynamical system.

To complete the discussion of this example we write down a C∗-dynamical system
whose extension gives us the solenoid explicitly.

Let H = L2(R), and let A ⊂ L(H) be the algebra of operators of multiplica-
tion by periodic functions with period 2π. Identifying in a natural way the space
R (mod 2π) with the unit circle C(S1) we obtain an isomorphism A ∼= C(S1).
Consider the unitary operator U ∈ L(H) such that

(Uf)(x) =
√

2 f(2x), (U∗f)(x) =
1√
2

f

(
x

2

)
.

For a ∈ A , UaU∗ is the operator of multiplication by a(2x) and U∗aU is the
operator of multiplication by a(x/2). Thus, UA U∗ ⊂ A , U∗A U * A , and using
complex notation for the variable on S1 we obtain

UaU∗(z) = a(z2), a ∈ A .

In combination with the arguments presented above and Theorem 4.1, this formula
leads to the following result describing the reversible extension of the C∗-dynamical
system (A , U).

Proposition 5.7. Let (A , U) be the C∗-dynamical system introduced above and let
(E∗(A ), U) be its reversible extension described in Theorem 4.1. Then

M(E∗(A )) ∼= C(S2)

and the automorphism U( · )U∗ on the algebra E∗(A ) is induced by the solenoid
map F2, that is,

UbU∗ = b ◦ F2, b ∈ E∗(A ).
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[9] B.K. Kwaśniewski, On systems generalizing inverse limits for partial mappings, vol. 09,
Institute of Mathematics, Bialystok University 2007.

[10] R. L. Devaney, An introduction to chaotic dynamical systems, Addison-Wesley Stud.
Nonlinearity, Addison-Wesley, Redwood City, CA 1989.

[11] M. Brin and G. Stuck, Introduction to dynamical systems, Cambridge Univ. Press,
Cambridge 2002.

[12] J. E. Anderson and I. F. Putnam, “Topological invariants for substitution tilings and their
associated C∗-algebras”, Ergodic Theory Dynam. Systems 18:3 (1998), 509–537.

[13] M. Barge, J. Jacktlich and G. Vago, “Homeomorphisms of one-dimensional inverse limits
with applications to substitution tilings, unstable manifolds, and tent maps”, Geometry
and topology in dynamics (Winston-Salem, NC 1998 / San Antonio, TX 1999), Contemp.
Math., vol. 246, Amer. Math. Soc., Providence, RI 1999, pp. 1–15.

[14] M. Barge and W. T. Ingram, “Inverse limits on [0, 1] using logistic bonding maps”,
Topology Appl. 72:2 (1996), 159–172.

[15] J. T. Rogers, Jr., “On mapping indecomposable continua onto certain chainable
indecomposable continua”, Proc. Amer. Math. Soc. 25:2 (1970), 449–456.

[16] W.Th. Watkins, “Homeomorphic classification of certain inverse limit spaces with open
bonding maps”, Pacific J. Math. 103:2 (1982), 589–601.

[17] R. F. Williams, “One-dimensional non-wandering sets”, Topology 6:4 (1967), 473–487.

[18] I. Yi, “Canonical symbolic dynamics for one-dimensional generalized solenoids”, Trans.
Amer. Math. Soc. 353:9 (2001), 3741–3767.

[19] B.K. Kwaśniewski, “Inverse limit systems associated with F2n zero Schwarzian unimodal
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